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Abstract

Deriving a functional form for a series of prices over time is difficult.  It is common to assume 
some linearly estimable form for prediction purposes. While this can produce accurate short 
run forecasts it fails to identify longer trends and patterns that may exist in financial data.  
Particularly troublesome is the potential for chaotic behaviour which can look like standard 
autocorrelation. Also, components of a price’s behaviour may not be linear or may be unable to 
be structured well in a stationary series.  Recently, more research has been devoted to whether or 
not a series of prices exhibits deterministic behaviour, instead of some type of Brownian Motion 
(regular or fractal). This research suggests that some time series data may pass typical tests for 
randomness where randomness does not exist. Given the breadth of current research, the most 
logical and reasonable beginning assumption for modeling a time series is that data probably 
exhibit both deterministic and random components. This paper will make use of the techniques 
of spectral analysis and the Hurst Exponent to measure the level of long-run dependence in the 
price data of gold. This technique will allow for the separation and quantification of how large 
the deterministic and random components of gold prices are.
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1.   Introduction

When modelling price movements, it is common to use a random walk framework. 
The random walk assumption limits modelling changes in prices over time primarily to 
using auto regressive and moving average processes. While this technique offers strong 
short-term forecasting, it cannot offer much of a description about how and why prices are 
changing over time, aside from correlation to past prices. Since ARIMA (Auto-Regressive 
Integrated Moving Average) models remove elements of long-term relationships in order 
to make the data stationary, we lose quantification of the long-run elements in a time series 
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and move those elements into the error term. The complexity of modelling long-term 
relationships is compounded by the fact that if a dynamic economic system is non-linear, 
the system may be complex enough to pass standard tests of randomness and become 
misidentified (Baumol and Benhabib, 1989). The misidentification is usually due to the fact 
that deterministic processes have infinite variance and we tend to remove infinite variance 
from data, most commonly in the form of differencing. This critique is not novel, as many 
researchers have been concerned with measuring longer stationary cycles in dynamic 
economic systems (Baumol and Benhabib, 1989; Fama and French, 1988; Hsieh, 1991; 
Lo, 1991; Mayfield and Mizrach, 1992). One determinant of price path behaviour is long 
run dependence (i.e. memory/history). Highly persistent behaviour in economic systems 
can lead to events farther back in the history of the series that continue to have an influence 
on today’s prices. The persistence of a series can be measured through the calculation of a 
Hurst Exponent (Hurst, 1951). While the Hurst Exponent does not definitively determine 
whether or not a system is linear or non-linear it does aid in our understanding of how the 
series will propagate in the future.

Gold, not unlike other financial instruments, is subject to memory (long-term cycles). 
Memory in a financial process implies that the history of prices partially dictates how prices 
fluctuate in the future. The presence of memory can mean that deterministic behaviour is 
present in a system. Deterministic behaviour is typically multiplicative in nature. Again 
this idea is not new to the literature, as many systems have been tested for deterministic 
and chaotic behaviour. Deterministic behaviour is just one component of the workings of 
gold prices, there is also a random component as well. This article will take advantage 
of the Hurst Exponent and a space-time regression in order to separate the deterministic 
from the random component of the changes in price. Throughout this article, deterministic 
components may be referred to as endogenous and random components may be referred 
to as exogenous. This is because the deterministic component represents intra-industry 
changes that have an effect on the market price, whereas the random component represents 
the effect on the market price from outside influences. Separation of the two components of 
the market price can allow us to see the extent to which market structure and macroeconomic 
changes affect price.

2.  Analysis of Components of Gold Prices

Before we start with any data analysis let us get to the root of the long term memory 
problem. In Figure 1 there are ACF’s for two different series: one is a deterministic chaotic 
logistic equation, the other is Regular Brownian Motion. 



101 

Compartmentalising Gold Prices

Figure 1: Comparison of a Deterministic and Random ACF

The first panel is the ACF for the chaotic logistic data and the second is the Regular 
Brownian Motion. Although there are slight differences, there is relatively little that 
distinguishes the two. In modelling we may see poor performance from an ARIMA model 
with chaotic data, but that is all. It should be kept in mind that there are many functional 
forms that can produce chaotic behaviour aside from a relatively simple logistic function. 
That is the motivation behind looking at the series in its entirety for memory prior to any 
modification.

The first dataset used in this study is the average monthly gold price per ounce from 
January of 1968 to October of 2009. The data are displayed in Figure 2 below.

Figure 2: Average Price of Gold by Month (1968-2009)
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 As we would expect, there is a trend and some randomness in the series. Removing 
the trend by looking at the data of the percentage change in the price shows the stationary 
form of the data (Figure 3).

Figure 3: Average Monthly Return in Gold Price (1968-2009)
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The existence of heteroskedasticity in the error term is also common in many 
financial series. A test of the squared residuals in both the stationary and non-stationary 
data shows the presence of heteroskedasticity in the error term. Although we will not do 
an ARCH model in this article for the sake of brevity, there are most definitely modeling 
techniques with an ARCH process that could model this behaviour. However we would still 
not be allowing for the possibility of an infinite variance process. The ACF and PACF plots 
as well as the non-stationarity of the data would suggest an ARIMA model of order (1,1,1). 
The results of the ARIMA(1,1,1) in Table 1 are as follows:

Table 1

Variable Coefficient Std. Error t-statistic Significance
Constant 2.6864 1.5295 1.7564 [0.0797]
AR(1) -.4718 0.1058 -4.4599 [0.0000]
MA(1) 0.7314 0.0834 8.7732 [0.0000[
R2 = 98.63% SE = 19.23
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Using a modelling approach such as ARIMA does not measure or investigate the 
existence of a deterministic long-run cycle with infinite variance. It should also be noted 
that the Hurst Exponent that we will use to estimate the amount of memory in the series is 
linked to the differencing parameter in an ARIFMIA model where the Hurst Exponent is 
equal to 1-d. Instead, we will start our analysis with the reverse question; is there memory 
or long-run cycles in the data?

To discover long-run cycles we want to impose as little of a functional form as 
possible and avoid averaging, differencing and the like. Although there are many directions 
that can be taken to accomplish this we will use a spectral analysis to test for the existence 
of long-run cycles, due to the acceptance of the technique (Clegg, 2005; Clegg, 2006; 
Sarker, 2007; Smith, 1992; Stone, Lewi, Landon and May, 1996). Then, the persistence of 
the memory in the system will be measured via the Hurst Exponent. This will provide a 
quantification of the level of the long-run effects.

To determine if periodic components exist, a traditional spectral analysis will be 
used. We will not use a stationary series for this analysis because we want to allow for 
the possibility of infinite variance in the deterministic process. Instead, we will separate 
the deterministic and random components by their long term memory and their linear 
seperability via the ACF. In Figure 4 the only significant cycles at a 5% level are at 250.5 
and 83.5 months. Over the rest of the frequency domain the periodicity falls off. The results 
suggest that the cycles in gold prices occur over very long intervals in time.

Figure 4: Full Spectrum Periodogram for Gold Price
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There are two more cycles that are significant at the 5% level that cannot be seen over 
the entire range of the frequency domain. To see all of the statistically significant cycles, 
the frequency window has been shortened to 1.4 (Figure 5). In addition to the previously 
mentioned cycles, there is also a 55.67 and a 41.75 month cycle that are significant at the 
5 % level. These additional two cycles are still rather long and there is no statistically 
significant cycle under three years in length.

Figure 5: Shortened Periodogram for Gold Price
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This demonstrates some of the problems with identifying patterns in financial data. 
Here we have a series that exhibits long cycles over time, which may suggest a certain 
amount of memory and deterministic behaviour in the system. If ARIMA modelling is 
used, these long-run cycles will be removed and we will not have a chance at identifying the 
potential for a portion of the series to have infinite variance. To identify the break between 
random and deterministic components in a linear fashion, we can measure the dependence 
through the autocorrelation function. Figure 6 displays the level of autocorrelation within 
the system, the ACF value does not reach zero until a lag of 93 months. This is where 
we will separate the data in the space-time regression by the components that have finite 
variance and the components that do not.
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Figure 6: ACF of Gold Price Data
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To measure the level of persistence in the system, the Hurst Exponent will be 
estimated via the periodogram method (this is to keep continuity with the previous spectral 
analysis). The results are shown in Table 2 and Figure 7 below. The Hurst Exponent is 
calculated from the regression equation results in Table 1 below.

Table 2

Variable Coefficient Std. Error t-statistic Significance

Constant 8.448 0.053 160.694 0.000

Log Frequency (α) -1.689 0.054 -31.229 0.000

R2 = 79.73%  SE = 0.82

The Estimate of the Hurst Exponent (H) is:
 

 
(1 )

2
aH   (1)
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In this case, the point estimate of the Hurst Exponent is H= 1.345. Given a 95% 
confidence interval the Hurst Exponent has a range from 1.292 to 1.397. If the system is 
random (no memory) the Hurst Exponent would be equal to 0.5. This robust result confirms 
the presence of persistent memory in the system, meaning that history is causing some of 
the changes in price over time. This suggests that a portion of the structure of gold prices 
is deterministic. 

Figure 7: Hurst Estimation of Periodogram Results
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With the information gathered from the spectral analysis, autocorrelation function, 
and the Hurst Exponent, a space-time regression was performed in order to separate the 
deterministic from the random components. Since the space-time regression uses the 
memory information to separate components that are dimensionally independent, we can 
split the price data into two basic components, which sum to equal the entire signal. It 
should be retained that deterministic phenomena that are not dimensionally independent 
may have infinite variance, whereas a random phenomenon does not. Definitionally we will 
define the two together as the entire price, where:

 Pricet = Deterministict + Randomt (2)
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In Figure 8 below the two components of the price of gold can be seen.

Figure 8: Separated Components of Gold Price (1968-1993)

Months

$/
oz

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350
-50

50

150

250

350

450

550

650

Deterministic Component
Random Component

From Figure 8, it can be seen that the deterministic component is the smaller of the 
two components of gold price. The random (additively separable) component is the larger 
of the two components. This infers that most of the market price of gold is coming from 
exogenous events (outside of the gold industry) and that very little of the price of gold is 
determined by endogenous events. Thus the data suggests that the market structure of the 
gold industry has little impact on the market price for gold.
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Figure 9: Normalized Separated Components of Gold Price (1968-1993)
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To better identify the behaviour of the two components, both series were normalized 
(Figure 9) to reduce the effects of scaling.

In Figure 9 it can be seen that the deterministic portion has cycling behaviour and 
that the additively separable component appears as if it is AR(1). Further investigation 
of these two components on an individual basis is necessary to determine their effect on 
market structure. That will not be done here as it is not the focus of this article.

In Figure 10 below, the ACF plot of the deterministic component shows the 
cycling behaviour. It is important to note that we can now better identify the deterministic 
component.



109 

Compartmentalising Gold Prices

Figure 10: ACF Plot of Deterministic Component
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Performing a spectral analysis again on the deterministic component gives us the 
cycling of the deterministic behaviour (Figure 11).

Figure 11: Full Spectrum Periodogram of Deterministic Component
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Now we can see four cycles that are significant at 167, 71.75, 50.1 and 38.54 months. 
This demonstrates that there is still long-run dependence in the system which is confirmed 
by another test of the Hurst Exponent (Figure 12).

Figure 12: Hurst Estimation of Deterministic Periodogram Results
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The Hurst Exponent is equal to 1.509 with a range of 1.414 to 1.604 at a 95% 
confidence interval, demonstrating that there is memory in the system. One conclusion 
that it might be drawn is that since there is memory in the endogenous portion of the gold 
price this displays that the industry itself is not perfectly competitive. If it was perfectly 
competitive, the endogenous component would attenuate to a flat signal over time. It can 
be concluded that although the endogenous component is small, market structure does play 
a role in the market price. However, as it was seen in Figure 8, the market structure impact 
is minimal in this case. The general result shows that changes in the market structure of the 
gold industry have very long-run impacts and that the market structure impacts have a small 
effect on the market price. From a theoretic standpoint this makes sense; although there are 
few sellers, there are many buyers. Therefore, it is the buyers of gold that are causing the 
large changes in the equilibrium price. In the case of gold prices, the exogenous component 
of the price has the greatest affect. Investigation of the exogenous component of the price 
of gold in more detail is necessary, but it is outside of the scope of this article.

In Figure 13 below, the additively separable (exogenous) component shows a series 
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that has some autoregressive components. It should be noticed that this plot looks similar 
to the ACF plot of the entire series, which again reinforces the large difference in the 
magnitudes of the two components.

Figure 13: ACF of Random Component
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To account for the non-stationarity of the exogenous component, an AR(1) regression 
with a trend was performed (Table 3). This makes the exogenous data stationary, as it can be 
seen in Figure 14. Bias has also been removed from the estimators because the endogenous 
component has been removed. 

Table 3: AR(1) Model of Random Component

Variable Coefficient Std. Error t-statistic Significance

Constant 47.919 78.146 0.613 0.540

Trend 1.279 0.401 3.194 0.002

AR(1) 0.981 0.011 88.121 0.000

R2 = 98.70% SE = 18.54
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Figure 14: ACF Plot of Residuals – AR(1) Model with Trend
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The AR(1) model is commonly used for financial models of price movements over 
time. It is true that we could have just modelled the entire price of gold with an AR(1) 
model and would have obtained similar model results as to those in Table 1. However, 
the purpose of this technique is not about forecasting per se, it is about being able to 
compartmentalize prices in a way that helps determine cause and effect. In the case of 
gold, it was unknown a priori that the endogenous component of the price would be small. 
It is important to investigate these effects first before a modelling decision is made. For 
gold prices specifically, we have learned that there are cycles and they are very long. For 
forecasting purposes this may only be useful for longer time horizons. However, the market 
structure implications of the result are the most important. The small impact of the market 
structure tells us the changes in the market structure have little impact on market prices. 
This type of analysis is important to understand how much market structure changes will 
impact equilibrium prices. The small size of the endogenous component may not be the 
case for other commodities or precious metals; each one will need to be tested individually 
to better understand market structure impacts in those markets.

3.  Conclusion

The price of gold has two major components, deterministic and random. In the case 
of gold prices the deterministic component is small relative to the random component. This 
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suggests that industry structure has little effect on the price of gold. The preponderance 
of the results of the analysis concludes that external events (randomness) have the largest 
impact on the changing price of gold over time. This finding may have many important 
consequences. 

For example, from an anti-trust standpoint this type of analysis can give better 
insights as to how mergers may affect an industry. The case of gold mergers will have 
very little influence on prices whereas the result may be different in other industries. It is 
important to note that there could be two industries with the same or similar HHI indices 
but with drastically different exogenous and endogenous signals that impact their respective 
markets differently.

From the analysis, we now know that external factors, such as business cycle events, 
will have a larger effect on price changes than that of intra-industry competition. There is 
very little that firms in the gold industry can do to alter market prices.

This paper should serve as just the beginning of a process of testing industries along 
these lines. More research needs to be done with this methodology on other industries 
to determine if there is true merit to the technique. In the appendix the same analysis is 
performed on two other commodities for comparison to the results on gold prices. Future 
extensions with respect to gold prices include determining supply and demand curves for 
both effects, which was not possible with this data set as the production numbers of gold 
have been historically unreliable. Further investigation as to what relationship exogenous 
and endogenous components may or may not have with the HHI and how much they vary 
with different industries is needed.

In terms of our understanding of long-memory processes, as well as deterministic 
and chaotic deterministic behaviour is concerned, further research needs to be done in 
economics and finance to better understand how and if we can use some of the techniques 
that have been developed in physics and the biological sciences. What we do know is that 
new dynamical system techniques are being further developed and further investigation 
of their validity and use in economics and finance is warranted as we continually strive to 
understand a really complex behaviour.
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Appendix

In order to see how this technique works with other data, a similar analysis was performed 
on the average U.S regular formulation retail gas price from August 1990 to January 2011 
(Figure 15).

Figure 15: U.S Average Monthly Retail Gas Price (Aug 1990 – Jan 2011)
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Source: (U.S Energy Information Administration, Feb-11)

Again we can see similar data analysis problems such as the apparent heteroskedasticity 
in the data (Figure 16).  This can be confirmed through the stationary plot below as well as 
with a t-test of the squared errors of the series.
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Figure 16: Percentage Change in Average Monthly Retail Gas Price
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Again let us look at the original series to see what cycles may exist in the data.  
The following four cycles are significant at the 95% level.  Again we see some long-run 
memory as the shortest cycle is 30.75 months (Figure 17).
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Figure 17: Periodogram of Average Retail Gas Price
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An estimation of the Hurst Exponent confirms that there is memory in the series with 
the Hurst Exponent being equal to 1.43 (Figure 18).  
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Figure 18: Hurst Estimation of Retail Gas Price
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Performing the same analysis as before, the deterministic and random components 
of the series are separated and it can be seen below.  As in the gold price data the random 
component is larger than the deterministic component so we will again look at the normalized 
data (Figure 19).  
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Figure 19: Normalized Separated Components of Gas Prices
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In Figure 19, it looks as if both series may be random, again this could be a case 
where the deterministic component is chaotic.  While we will not do so here, we could test 
the deterministic series for chaotic behaviour with tests as proposed by Stone, Landan and 
May (Stone et al., 1996).  What is more of interest to the author of this article is that we 
need to allow for its existence when we model behaviour.

Finally, for one more look at methodology we will look at the residential natural gas 
price in the U.S. as seen in the graph below (Figure 20).
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Figure 20: U.S Average Monthly Residential Natural Gas Price
(Jan 1981 – Nov 2010)
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Again we see the same issues with heteroskedasticity, and as before we are confronted 
with the same methodological issues. Again we could remove the non-stationarity by 
differencing, but will still have the same methodological issues (Figure 21).
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Figure 21: Percentage Change in Average Monthly Natural Gas Price
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In the case of natural gas, there were five cycles that were significant at the 95% 
level, the shortest of them being 11.97 months (Figure 22).  In this example, natural gas 
differs from the other two datasets because it does have a shorter cycle, but it is similar in 
that there is still long-term memory in the series.
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Figure 22: Periodogram of Residential Natural Gas Price
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This is confirmed by the Hurst Exponent, which is estimated to be 0.81 (Figure 23), 
still showing persistence in the data, but at a lower level than the other two datasets.
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Figure 23: Hurst Estimation of Residential Natural Gas Price
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Performing the same analysis as before, we again find that the random component 
is larger than the deterministic component. Looking at the normalized data, we can see the 
behaviour of the two components.  In this case, it appears as if the deterministic behaviour 
has a bit more regular cycling (Figure 24). This could be partially attributed to the lower 
level of persistence as measured by the Hurst Exponent. What we can see is that the 
deterministic behaviour in this series has been cycling on a more “regular” frequency than 
that of the other two series.
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Figure 24: Normalized Separated Components of Natural Gas Price
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Between all three datasets we can see some similarities and some differences. Why 
is the random component the largest in all three series? That is a good question that needs 
to be answered. We also need to ask the question of how prevalent is chaotic behaviour as 
well as how we can better model chaotic behaviour. These are important questions which 
hopefully will be answered with future research. A clear point is that we must first start 
by allowing for the existence of modelling deterministic infinite variance processes and 
possibly chaotic deterministic processes in order to discover if they are valid or not.


